From Courtrooms to Charts: The Impact of Kavanaugh's Appointment on Music Consumption Luca Rossi

November 19, 2024

University of Ferrara and Parma

www.lrossi95.github.io

In recent years, there has been an increase in **political consumerism**, a phenomenon where **consumers "vote" with their wallets**.

Companies followed by taking stances on political and social matters. (Stolle and Micheletti, 2013)

For example, Nike and Pepsi have produced ad campaigns inspired by the Black Lives Matter movement. (Liaukonyte et al., 2023)

Context: Political Consumerism

Political consumerism became evident in the film industry following the **Weinstein scandal** and the **#MeToo movement** in 2017 (Luo and Zhang, 2022).

- **#MeToo** boosts Hollywood producer-female writer collaborations.
- Weinstein-associated producers were **35% more likely** to work with post-scandal **female writers**, especially those closely connected to him.

In the music industry, it is usually the **Artist** that takes a stance on **political and social issues**.

This Paper

Research question

Did Kavanaugh's appointment affect music consumption in the US?

As **setting** we chose:

- Kavanaugh's Appointment at Supreme Court #MeToo
- Platform: **Spotify**

Main Results:

- Female artists' streams increase w.r.t. males' and groups' ones
- The effect is short-term 3 Months

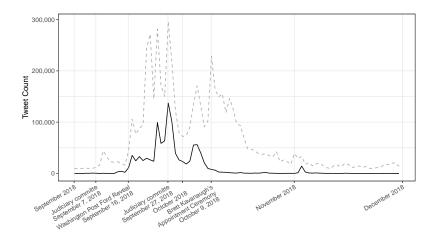
Who is Brett Kavanaugh?

- Brett Kavanaugh is a federal judge nominated to the US Supreme Court by President Donald Trump on 6th October 2018.
- Considered a conservative judge.
- Accused of sexual assault by Christine
 Ford, who testified before the Senate
 Judiciary Committee.
- His appointment gave the Supreme Court a solid conservative majority.

Kavanaugh's Appointment media coverage

- In the tweets text analysis we have among the most common hashtags, #stopkavanaugh and #kavanaugh • Tweets Hashtags
- #MeToo, had a significant increase in tweets in September 2018, returning to previous levels in two months.
- As a proxy for general interest, we use Tweets count about #MeToo and #stopkavanaugh and #kavanaugh

$\# {\sf MeToo}$ and Kavanaugh tweets



Tweet Count -- #MeToo & Kavanaugh Mention - Kavanaugh Mention

Most common hashtags in tweets in the selected period:

- 1. #metoo: 2 857 575 6.
- 2. no hashtag: 2 458 176
- 3. #believesurvivors: 339 692
- 4. #whyididntreport: 293 834
- 5. #timesup: 176 026

- 6. #believewomen: 116 173
- 7. #stopkavanaugh: 114 948
- 8. KoreanTweets: 90 688
- 9. #kavanaugh: 86 591
- 10. #himtoo: 86 410

Data

1. Charts: 200 most streamed songs in the US on Spotify

- $\rightarrow~$ Number of streams
- ightarrow Song rank (1-200)
- $\rightarrow~$ Days on chart
- \rightarrow Release week (0 -1)
- $\rightarrow\,$ Release date
- 2. Song Features elaborated by Spotify:
 - $\rightarrow\,$ Danceability, Tempo (bpm), Energy, Key, Duration (length), etc.
- 3. Artists data:
 - ightarrow Gender: Female, Male, Group (musicbrainz.com)
 - ightarrow Followers

Descriptive statistics

	Female		Male		Difference	
	Mean	SD	Mean	SD	Δ	P-value
Charts						
Days on Chart	78	76	161	176	-83	0
Chart Rank	101	58	98	58	3	0.02
Week of Release	0.04	0.19	0.13	0.33	-0.09	0
Streams	449,715	386,390	439,051	288,533	10,664	0
Artists						
Artist Followers	51,544,874	40,983,042	24,882,703	26,019,201	26,662,171	0
Song Characteristics						
Song Duration (Seconds)	203	27	194	51	9	0
Is Explicit	0.32	0.46	0.81	0.39	-0.5	0
Major Record Label	0.72	0.45	0.5	0.5	0.22	0
Is Empowering	0.34	0.48	0	0.06	0.34	0
Is Sexist	0.18	0.38	0.61	0.49	-0.44	0
Is Single Release	0.56	0.5	0.2	0.4	0.36	0
Song Features						
Acousticness	0.3	0.3	0.25	0.26	0.06	0
Danceability	0.62	0.13	0.73	0.14	-0.11	0
Energy	0.58	0.17	0.58	0.15	0	0.7
Musical Mode	0.6	0.49	0.62	0.49	-0.02	0.09
Speechiness	0.08	0.06	0.16	0.12	-0.08	0
Tempo (BPM)	119.21	28.2	125.64	29.07	-6.42	0
Time Signature	3.9	0.3	3.97	0.22	-0.07	0
Valence	0.38	0.17	0.43	0.2	-0.05	0
Number of observations:	2,1	120	14,103		-11,9	83

Summary Statistics - Songs by Female and Male Artists between September 3, 2018, and December 23, 2018

The Model

Difference-in-Difference Specification:

 $\log(\mathsf{streams}_{it}) = \theta_i + \gamma_t + \beta_1 \mathsf{Female}_i \times \mathsf{Post}_t + \beta_2 \chi_{it} + \epsilon_{it}$

Where:

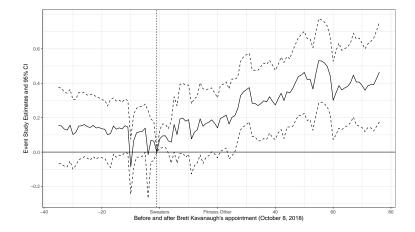
i is the item observation at song level

t is the time observation at day level

 The coefficient β₁ captures the difference between the log of the streams of songs performed by male or female artists.

The event study was conducted using observations from the **first Monday of September** to the **last Sunday before Christmas in December 2018**.

Event Study: Female and Male artists



Regression Table: Female and Male artists

Dependent Variable:	Log(Streams)				
Model:	(1)	(2)	(3)	(4)	
$Post_t \times Female_i$	0.295***	0.291***	0.176**	0.157**	
	(0.088)	(0.066)	(0.072)	(0.072)	
Fixed-effects					
Artist	\checkmark	\checkmark			
Day	\checkmark	\checkmark	\checkmark	\checkmark	
Song			\checkmark	\checkmark	
Fit statistics					
Standard-Errors	Artist		So	ng	
Observations	16,223	16,223	16,223	16,223	
R ²	0.360	0.441	0.801	0.828	
Within R^2	0.009	0.134	0.008	0.145	

Event Study: Placebo

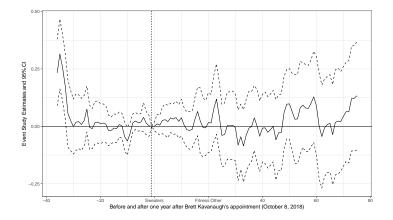


Figure: Event Study using 2019 as Placebo

Placebo Diff-in-Diff

Dependent Variable:	Log(Streams)		
Model:	(1)	(2)	
$Post_t \times Female_i$	0.010	-0.011	
	(0.076)	(0.063)	
Fixed-effects			
Artist	\checkmark		
Day	\checkmark	\checkmark	
Song		✓	
Fit statistics			
Standard-Errors	Artist	Song	
Observations	16,614	16,614	
R ²	0.492	0.814	
Within \mathbb{R}^2	0.149	0.128	

Coefficient plot per year: $Post_t \times Female_i$

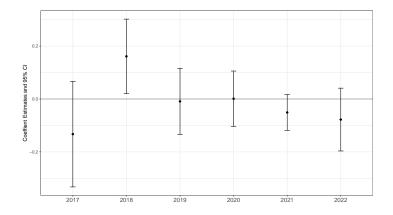


Figure: Annual Regression $Post_t \times Female_i$ Estimates in the US

Coefficient plot per country: $Post_t \times Female_i$

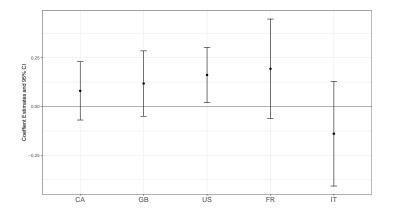


Figure: $Post_t \times Female_i$ Estimates Across Countries in 2018

Gender share in Playlists

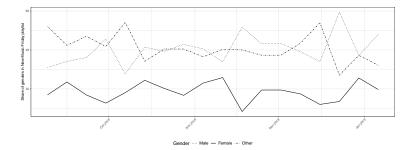


Figure: Share of songs among single artists in the New Music Friday Playlist, per gender

Kavanaugh's nomination thus marked a **turning point in the discourse on sexual misconduct**, with significant implications for gender politics in the United States. (Lawless, 2018)

We analyzed the lyrics of the songs in the charts for:

- 1. Sexism: BERTModel to identify sexist verses
- 2. Female Empowerment: LLM (LLAMA3 from Meta) to identify whether a song is an empowerment song or not

Examples: Female empowerment and sexism from females

I'M THAT GIRL

Beyoncé - RENAISSANCE

Lyrics

I pull up in these clothes, look so good

'Cause I'm in that, hoe

You know all these songs sound good

'Cause I'm on that, hoe

Deadass, deadass, l'm deadass

It's not the diamonds

It's not the pearls

I'm that girl (I'm that girl)

Examples: Female empowerment and sexism from males

ALL OF THE LIGHTS

Kanye West - My Beautiful Dark Twisted Fantasy

Lyrics

Restraining order, can't see my daughter

I made mistakes

I bumped my head

Them courts sucked me dry

I spent that bread

She need her daddy, baby, please

Lyrics: Sexism

God Made Girls - RaeLynn			
Verse	Sexist (0/1)		
Somebody's gotta wear a pretty skirt	1		
Somebody's gotta be the one to flirt	1		
Somebody's gotta wanna hold his hand	1		
So God made girls	0		
Somebody's gotta make him get dressed up	1		
Give him a reason to wash that truck	1		
Somebody's gotta teach him how to dance	1		
So God made girls	0		

Table: Sample Lyrics and Assigned Sexism Labels (0 = Not Sexist, 1 = Sexist)

Lyrics: Sexism

Dependent Variable:		Log(St	reams)	
Model:	(1)	(2)	(3)	(4)
$Post_t imes Sexist$	0.381***	-0.027	-0.033	-0.046
	(0.119)	(0.048)	(0.046)	(0.046)
$Post_t \times Sexist \times Female_i$				0.491***
				(0.123)
Fixed-effects				
Song	\checkmark	\checkmark	\checkmark	\checkmark
Day	\checkmark	\checkmark	\checkmark	\checkmark
Fit statistics				
Standard-Errors		So	ong	
Observations	2,102	14,081	16,183	16,183
R ²	0.853	0.831	0.827	0.829
Within R^2	0.061	0.166	0.139	0.149

Text Analysis Prompt Example

- Perform text analysis to recognize language and assess empowerment.
- Respond only with a JSON dictionary.

Lyrics

To the old, and to the new, we dedicate this song...

Consider these as examples of female empowerment:

- "Who run the world? Girls!"
- "My persuasion can build a nation..."
- "Strong enough to bear the children..."

Lyrics: Empowerment with prompt engineering

Table: Difference-in-Differences: log(streams) - Songs by Female and Male Artists considered empowering by LLAMA 3 model for: US.

Dependent Variable:	Log(Streams)		
Model:	(1)	(2)	(3)
$Post_t \times Female_i$	0.268***	0.102	0.111
	(0.100)	(0.066)	(0.077)
$Post_t \times Female_i \times Empowering_i$	-0.263*	0.393**	0.311**
	(0.140)	(0.195)	(0.137)
Fixed-effects			
Song	\checkmark	\checkmark	\checkmark
Day	\checkmark	\checkmark	\checkmark
Prompt Type	Blind	Sighted	Examples
Threshold	0.750	0.750	0.750
Fit statistics			
Standard-Errors		Song	
Observations	16,172	16,172	16,172
R ²	0.829	0.829	0.829
Within R ²	0.148	0.149	0.146

Lyrics: Empowerment with different thresholds

Table: Difference-in-Differences: log(streams) - Songs by Female and Male Artists considered empowering by LLAMA 3 model for different thresholds.

Dependent Variable:	Log(Streams)			
Model:	(1)	(2)	(3)	
$Post_t imes Female_i$	0.087	0.107	0.111	
	(0.117)	(0.112)	(0.077)	
$Post_t \times Empowering_i$	-0.207***	-0.207***	-0.207***	
	(0.022)	(0.022)	(0.022)	
$Post_t \times Female_i \times Empowering_i$	0.285**	0.286**	0.311**	
	(0.136)	(0.137)	(0.137)	
Fixed-effects				
Song	\checkmark	\checkmark	\checkmark	
Day	\checkmark	\checkmark	\checkmark	
Empowerment Threshold	0.650	0.700	0.750	
Fit statistics				
Observations	16,172	16,172	16,172	
R ²	0.829	0.829	0.829	
Within R ²	0.145	0.145	0.146	

Lyrics: Empowerment with different samples

Table: Difference-in-Differences: log(streams) - Songs by Female and Male Artists considered empowering by LLAMA 3 model for: US.

Dependent Variable:	Log(Streams)		
Model:	(1)	(2)	(3)
$\text{Post}_t \times \text{Female}_i$			0.111
			(0.077)
$\mathrm{Post}_t \times \mathrm{Female}_i \times \mathrm{Empowering}_i$			0.311**
			(0.137)
Fixed-effects			
Song	\checkmark	\checkmark	\checkmark
Day	\checkmark	\checkmark	\checkmark
Sample	Females	Males	All
Empowerment Threshold	0.750	0.750	0.750
Prompt Type	Examples	Examples	Examples
Fit statistics			
Standard-Errors		Song	
Observations	2,102	2,102	16,172
R ²	0.846	0.846	0.829
Within R ²	0.017	0.017	0.146

Lyrics: Label

Table: Difference-in-Differences: log(streams) - Empowering songs by Label: US.

Dependent Variable:	Log(Streams)
Model:	(1)
$Post_t \times Female_i \times Label = Universal$	-0.427***
	(0.115)
$Post_t \times Female_i \times Label = Warner$	-0.335**
	(0.138)
$Post_t \times Female_i$	0.476***
	(0.107)
Fixed-effects	
Song	\checkmark
Day	\checkmark
Fit statistics	
Standard-Errors	Song
Observations	16,223
R ²	0.830
Within R ²	0.154

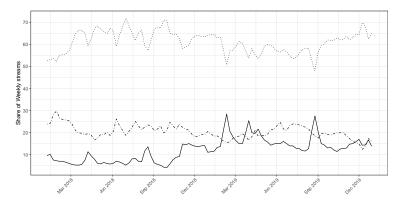
Key Takeaways

- The media attention on Kavanaugh's Appointment and on the #MeToo movement had an effect on music consumption in the United States in the following 70 days.
- Increase of approximately 16% in the consumption of music performed by women, compared to music performed by men and groups.
- Sexist songs from women **increase** of approximately **40%** w.r.t non-sexist songs.
- Songs that are **flagged as empowering** by LLAMA3, have a fairly significant increase of **30%** w.r.t non empowering songs.

Thank you !!

Appendix

Gender share in charts



Gender ···· Male --- Female ·-· Other

Figure: Share of daily streams among single artists, per gender

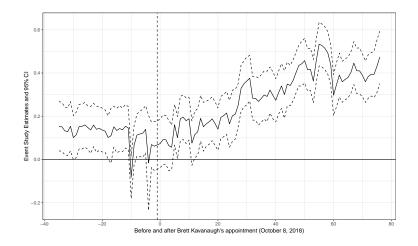


Figure: Bootstrapped results for main event study

Literature review

Under-representation of female artists in the music industry:

- Smith et al. (2018) Report analyzing the presence in charts and prizes won by women
- D'Souza (2023) article reporting the women's underepresentation in the music industry.
- Kelley (2019) article pointing out gender inequality in music industry
- Bossi (2020) article analyzing the underlying factors for gender inequality.

Gender-bias in the movie industry:

• Ellis-Petersen (2014) Hollywood film crews 75-25 as Male-Female Ratio.

Bias in recommendation systems:

• Aguiar et al. (2021) Spotify favours women's songs in the positions of New Music Friday playlists.